Abstract

Topical photodynamic therapy (PDT) is widely used to treat non melanoma skin cancers. It consists of topically applying on the skin lesions a cream containing a prodrug (5-aminolevulinic acid (5-ALA) or methyl aminolevulinate (MAL)) that is then metabolized to the photosensitizer protoporphyrin IX (PpIX). Light irradiation at PpIX excitation wavelength combined with oxygen then lead to a photochemical reaction inducing cell death. Nevertheless, this conventional PDT treatment is currently restricted to superficial skin lesions since the penetration depth of the prodrug is limited and hampers the production of PpIX in deep seated lesions. To overcome this problem, dissolving microneedles (MNs) included in a square flexible patch were developed. This easy-to-handle MN-patch is composed of 5-ALA mixed with hyaluronic acid (HA) and has the ability to dissolve after skin application. To evaluate the efficiency of this MN-patch in vivo, a skin lesion model has been developed on rats by applying UV-B illuminations. After 40 UV-B illuminations, histological and pharmacokinetic controls confirmed that the rats presented skin lesions. Once the rat skin lesion model has been validated, it was demonstrated that the MNs penetrated into the skin and fully dissolved in one hour on most of the rats. After one hour, the fluorescence images showed that the MN-patch produced a consequent and homogeneous level of PpIX. Overall, the dissolving MN-patch is a recent technology that has interesting features and several preclinical investigations should be led to compare its efficiency to that of the conventional treatment for PDT of non melanoma skin cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call