Abstract
Partial differential equations (PDEs) are expressions involving an unknown function in many independent variables and their partial derivatives up to a certain order. Since PDEs express continuous change, they have long been used to formulate a myriad of dynamical physical and biological phenomena: heat flow, optics, electrostatics and -dynamics, elasticity, fluid flow and many more. Many of these PDEs can be derived in a variational way, i.e. via minimization of an ‘energy’ functional. In this globalised and technologically advanced age, PDEs are also extensively used for modelling social situations (e.g. models for opinion formation, mathematical finance, crowd motion) and tasks in engineering (such as models for semiconductors, networks, and signal and image processing tasks). In particular, in recent years, there has been increasing interest from applied analysts in applying the models and techniques from variational methods and PDEs to tackle problems in data science. This issue of the European Journal of Applied Mathematics highlights some recent developments in this young and growing area. It gives a taste of endeavours in this realm in two exemplary contributions on PDEs on graphs [1, 2] and one on probabilistic domain decomposition for numerically solving large-scale PDEs [3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.