Abstract

To analyse the functions of genes that are expressed and potentially involved in the development of embryonic gonad cells, a method was developed by which foreign genes can be introduced and expressed in cultured mouse genital ridges. Genital ridges from mouse embryos at 12.5 days post coitus (dpc) were injected with plasmid DNA of a green fluorescence protein (GFP) gene construct and then placed between small electrodes. Rectangular pulses were charged to electroporate DNA into the cells. The treated genital ridges were cultured on a membrane of a culture insert, and GFP gene expression was observed under a fluorescence microscope. Green fluorescence protein expression in the genital ridges was found as early as 1 h after electroporation. Thereafter, the expression gradually increased, peaked after 1 day, and then decreased. A significant number of cells were, however, still positive for fluorescence even after 2 weeks in the culture, in which both gonads and germ cells had continued to develop. The GFP gene was expressed in 1-2% of cells in each genital ridge in a DNA concentration-dependent manner. In addition, we confirmed that an electroporated red fluorescent protein (DsRed) gene construct was expressed in GFP-expressing primordial germ cells in genital ridges of Oct-4/GFP transgenic embryos, although the DNA was mainly found in somatic cells in genital ridges. Finally, an expression vector containing the internal ribosome entry site-green fluorescent protein (IRES-GFP) gene was constructed. An inserted lacZ gene showed similar expression pattern to that of GFP Using this vector, we can easily monitor the expression of an inserted gene of interest by GFP expression. Therefore, this experimental system could be useful for quick assays of gene function in genital ridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.