Abstract

One of the four pectin methylesterase types isolated from Citrus sinensis var. Valencia fruit was used to demethylesterify a model homogalacturonan (HG) to 30%, 50% and 70% degree of methylesterification (DM) at pH 4.5 and 7.0, respectively. Introduced demethylesterified blocks (DMBs) were released by a limited endo-polygalacturonase (EPG) digestion, separated and quantified by HPAEC. Average DMB size (BS¯) and number of such blocks per molecule (BN¯) differed depending on final DM and reaction pH (P < 0.05). BS¯ and BN¯ were significantly higher in 30% DM HG than 50 and 70 DMs. pH 4.5 series showed significantly larger BS¯ compared to pH 7.5 series (P < 0.01). Distribution of DMBs released by limited EPG digest was predicted by mathematical modeling and in silico modeled processive (degree of processivity = 10), multiple attack mode of action best explains the experimental block distributions. Absolute degree of blockiness (DBabs) obtained from exhaustive EPG digestions, displayed a linear relationship with DM regardless of reaction pH (P < 0.001). Significant correlation coefficients between BS¯, BN¯, DBabs, and DM manifested the effectiveness of the block information gained from both EPG digestion to estimate DMB distribution pattern (P < 0.05). However, comparison of block distribution information of three isozymes revealed that difference in block pattern could be manifested by parameters from limited EPG digest (BS¯, BN¯) but not by those from exhaustive digest (DB/DBabs). The results suggested the possibility to control BS¯ and to customize specific population of demethylesterified pectin molecules using PME isozymes from Valencia orange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.