Abstract
The kinematic serial chain configuration of a finger modulates the frictional properties during tactile exploration tasks. This paper analyzes and subsequently models the effects of the entire finger during sliding operations on a surface. Qualitative and quantitative study of finger movement patterns with postures, sliding directions, and contact angles first indicate the effect of finger stiffness on contact mechanics. A "stiffness ellipse" is subsequently modeled to incorporate finger pose effects, and then coupled with the lumped mass-spring-damper model of the finger pad to estimate resultant contact forces. The performance of the proposed model is verified by comparing with experimental results obtained from ten subjects. The proposed model could estimate the general tendencies of contact forces with change in postures (Extended and Flexed), sliding directions (proximal and distal), and contact angles (20°, 40° and 60°). The experimental results indicate that finger stiffness significantly modulates the contact forces, stick-slip frequency, preloading duration and initial spike during sliding. Introduction of finger posture effects could explain the change in finger normal force during tactile exploration tasks. The proposed haptic rendering model can be used to give a more natural user feedback in virtual fingertip-surface interactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.