Abstract
It is fairly established that dynamic recordings of functional activity maps can naturally and efficiently be represented by functional connectivity networks. In this article we study weighted and fully-connected brain networks, created from electroencephalographic (EEG) measurements that concern patients with focal and generalized epilepsy. We introduce a totally new methodology that has never been utilized before and that investigates weighted and fully-connected networks, which includes eigen-decomposition analysis, feature extraction and quantitative comparisons among entire graph datasets. Our goal is to establish epileptic seizure detection/prediction rules, by identifying repetitive EEG activity in patients before and after each seizure onset. In the present paper we treat each brain network as a weighted and full adjacency matrix, without cutting, binarizing or ignoring any values. In this way, it is the first time that the full structure of the connectivity weighing profile is exploited. Also apart from graph theory approaches, mathematical models such as eigen-decomposition analysis are used in our research, in order to study and analyze brain networks. Finally, we present and discuss the results and conclusions of our new method, which are in line with earlier EEG epilepsy findings and demonstrate a standard EEG behavior in both the postictal and preictal period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.