Abstract
Probabilistic models such as logistic regression, Bayesian classification, neural networks, and models for natural language processing, are increasingly more present in both undergraduate and graduate statistics and data science curricula due to their wide range of applications. In this article, we present a one-week course module for students in advanced undergraduate and applied graduate courses on variational inference, a popular optimization-based approach for approximate inference with probabilistic models. Our proposed module is guided by active learning principles: In addition to lecture materials on variational inference, we provide an accompanying class activity, an R shiny app, and guided labs based on real data applications of logistic regression and clustering documents using Latent Dirichlet Allocation with R code. The main goal of our module is to expose students to a method that facilitates statistical modeling and inference with large datasets. Using our proposed module as a foundation, instructors can adopt and adapt it to introduce more realistic case studies and applications in data science, Bayesian statistics, multivariate analysis, and statistical machine learning courses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.