Abstract

Machine learning models are widely used in real-world applications. However, their complexity makes it often challenging to interpret the rationale behind their decisions. Counterfactual explanations (CEs) have emerged as a viable solution for generating comprehensible explanations in eXplainable Artificial Intelligence (XAI). CE provides actionable information to users on how to achieve the desired outcome with minimal modifications to the input. However, current CE algorithms usually operate within the entire feature space when optimising changes to turn over an undesired outcome, overlooking the identification of key contributors to the outcome and disregarding the practicality of the suggested changes. In this study, we introduce a novel methodology, that is named as user feedback-based counterfactual explanation (UFCE), which addresses these limitations and aims to bolster confidence in the provided explanations. UFCE allows for the inclusion of user constraints to determine the smallest modifications in the subset of actionable features while considering feature dependence, and evaluates the practicality of suggested changes using benchmark evaluation metrics. We conducted three experiments with five datasets, demonstrating that UFCE outperforms two well-known CE methods in terms of proximity, sparsity, and feasibility. Reported results indicate that user constraints influence the generation of feasible CEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.