Abstract

Modern comminution research and development are mainly product driven rather than material driven. An opinion that is gaining acceptance throughout the comminution community is that it is desirable for the comminution field to evolve toward material driven process design. To this end, this paper introduces the concept of mechanical texture, which corresponds to those textural properties of materials that have a direct bearing on their mechanical and fracture properties, which in turn should be the primary target for comminution process research and equipment design. The paper shows that mass specific fracture energy Ecs is a fracture parameter that is highly sensitive to variations in material texture, leading to selecting Ecs as a sound mechanical texture index. The paper then shows that, in the case of concrete, a set of specific features of the fracture porosity that can be measured inside concrete texture correlate highly with Ecs, thereby defining mechanical texture for concrete comminution. The demonstration that it is possible to establish a direct link between textural properties of concrete and macroscopic properties relevant to comminution shows that material driven comminution process modeling and design are possible and should be encouraged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.