Abstract

Abstract The Dynamical–Statistical–Analog Ensemble Forecast for Landfalling Typhoon Daily Precipitation (DSAEF_LTP_D) model is introduced in this paper. To improve the DSAEF_LTP_D model’s forecasting ability, tropical cyclone (TC) translation speed was introduced. Taking Supertyphoon Lekima (2019), which produced widespread heavy rainfall from 9 to 11 August 2019 as the target TC, two simulation experiments associated with the prediction of daily precipitation were conducted: the first involving the DSAEF_LTP_D model containing only the TC track (the actual trajectory of the TC center), named DSAEF_LTP_D-1; and the second containing both TC track and translation speed, named DSAEF_LTP_D-2. The results show the following: 1) With TC translation speed added into the model, the forecasting performance for heavy rainfall (24-h accumulated precipitation exceeding 50 and 100 mm) on 9 and 10 August improves, being able to successfully capture the center of heavy rainfall, but the forecasting performance is the same as DSAEF_LTP_D-1 on 11 August. 2) Compared with four numerical weather prediction (NWP) models (i.e., ECMWF, GFS, GRAPES, and SMS-WARMS), the TS100 + TS50 (the sum of TS values for predicting 24-h accumulated precipitation of ≥100 and ≥50 mm) of DSAEF_LTP_D-2 is comparable to the best performer of the NWP models (ECMWF) on 9 and 10 August, while the performance of DSAEF_LTP_D model for predicting heavy rainfall on 11 August is poor. 3) The newly added similarity regions make up for the deficiency that the similarity regions are narrower when the TC track is northward, which leads to DSAEF_LTP_D-2 having a better forecasting performance for heavy rainfall on 11 August, with the TS100 + TS50 increasing from 0.3021 to 0.4286, an increase of 41.87%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call