Abstract

The Fundamentals of Survival and Event History Analysis Introduction: What Is Survival and Event History Analysis? Key Concepts and Terminology Censoring and Truncation Mathematical Expression and Relation of Basic Statistical Functions How Do the Survivor, Density and Hazard Function Relate? Why Use Survival and Event History Analysis? Overview of Survival and Event History Models Exercises Using R and Other Computer Programs for Survival and Event History Analysis Introduction: Computer Programs for Survival and Event History Analysis Conducting Serious Data Analysis: Life Lessons Why Use R? Downloading R on Your Personal Computer Add-On Packages Running R Determining and Setting your Working Directory Help and Documentation Importing Data Into R Working With Data: Opening and Accessing Variables from a Data Frame Saving Output as File, Workspace and History and Quitting R Exercises Your First Session: Using the Survival Package and Exploring Data Via Descriptive Statistics and Graphs Your First Session Using the 'Survival' Package In F Loading and Examining the Survival Package and Rcmdrplugin.Survival Plug-In Opening and Examining Data The Surv Object: Packaging the 'Survival Variable' Basic Descriptive Statistics Descriptive Data Exploration with Graphs Exercises Data and Data Reconstruction Introduction: Why Discuss Data and Data Preparation? Sources of Event History Data Single-Episode Data for Single Transition Analyses Multi-Episode Data for Recurrent Event and Frailty Analyses Subject-(Person)-Period Data for Discrete-Time Hazard Models The Counting Process and Episode Splitting A Note on Dates Exercises Non-Parametric Methods: Estimating and Comparing Survival Curves Using the Kaplan-Meier Estimator Introduction The Kaplan-Meier Estimator Producing Kaplan-Meier Estimates Plotting the Kaplan-Meier Survival Curve Testing Differences Between Two Groups Using Survdiff Stratifying the Analysis by a Covariate Exercises The Cox Proportional-Hazards Regression Introduction: Why is The Cox Model So Popular? The Cox Regression Model Estimating and Interpreting The Cox Model with Fixed Covariates The Cox Regression Model with Time-Varying Covariates Exercises Parametric Models Introduction: What are Parametric Models and Why Use Them? Proportional Hazards (Ph) Versus Accelerated Failure Time (Aft) Models The Path to Choosing a Model Estimating and Interpreting Parametric Survival Models Exponential and Piecewise Constant Exponential Model Weibull Model Log-Logistic and Log-Normal Models Additional Parametric Models Finding the Best Fitting Parametric Model Exercises Model Building and Diagnostics Introduction Model Building and Selection of Covariates Assessing the Overall Goodness of Fit of Your Model What is Residual Analysis? Testing Overall Model Adequacy: Cox-Snell Residuals Testing the Proportional Hazards Assumption: Schoenfeld Residuals Checking For Influential Observations: Score Residuals (Dfbeta Statistics) Assessing Nonlinearity: Martingale Residual and Component-Plus-Residual Plots Exercises Correlated and Discrete-Time Survival Data: Frailty, Recurrent Events and Discrete-Time Models Introduction Shared Frailty: Modeling Recurrent Events and Clustering In Groups Other Frailty Models: Unshared, Nested, Joint and Additive Models Estimating Frailty Models in R Example of Frailty Model Estimation and Interpretation Discrete-Time and Count Models Exercises Multiple Events and Entire Histories: Competing Risk, Multistate Models and Sequence Analysis Introduction Competing Risk Models Multistate Models Sequence Analysis: Modeling Entire Histories Exercises Appendix : Datasets Used in this Book

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call