Abstract

When coherent light scatters from a surface, which is rough on the scale of the wavelength of the light, a speckle pattern is produced. The Laser Vibrometer measures target vibration velocity in the direction of the incident laser beam and typically samples a region of a speckle pattern on its photodetector. Target motions can cause the speckle pattern to change on the photodetector surface, particularly when target motions are non-normal to the direction of the laser beam. This speckle motion modulates the Doppler signal and adds noise to the demodulated output signal. Periodic target motions can cause the speckle noise to become pseudo-random and produce harmonic peaks, with the same fundamental frequency as the genuine target vibrations, which can be indistinguishable from the genuine target vibrations. Typical speckle noise levels are generally considered to be low-level, but they have not so far been adequately quantified. This paper reports preliminary results quantifying speckle noise levels using controlled experimental configurations incorporating periodic in-plane and tilt target motions. Working with commercial Laser Vibrometers, various target surface finishes and treatments are considered and speckle noise maps are produced for each configuration. For a tilting surface, speckle noise has been quantified at approximately 1 μm s −1/deg s −1 while, for surfaces with in-plane motion, the sensitivity to speckle noise has been estimated pessimistically at 0.1% of the in-plane velocity. Ultimately, these speckle noise maps will form a valuable practical resource for the Laser Vibrometer user.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.