Abstract

In this paper we discuss the principles of a combined approach to solve the problem of solute drag as it occurs in microstructure evolution processes such as grain growth, recrystallization and phase transformation. A recently developed irregular grid cellular automaton is used to simulate normal grain growth, in which the energy of the grain boundaries is the driving force. A new, discrete diffusion model is used to simulate solute segregation to the grain boundaries. The local concentration of the solute is then taken into account in the calculation of the local grain boundary mobility and/or grain boundary energy, thereby constituting a drag force. The relation between solute concentration and grain boundary mobility/energy is derived from molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.