Abstract
The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N2 adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO3 by pyrolysis at 450 °C (450-NiMnO3) to achieve remarkable NRR activity. The NiMnO3 3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N2 adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO3, 450-NiMnO3 showed excellent performance for nitrogen reduction to ammonia with a high NH3 yield of 31.44 μg h-1 mgcat-1 (at -0.3 V vs. RHE) and a splendid FE of 14.5% (at -0.1 V vs. RHE) in 0.1 M KOH. 450-NiMnO3 also shows high long-term electrochemical stability with excellent selectivity for NH3 formation. 15N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO3. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.