Abstract

It has been a long-standing challenge to develop high-performance solid-state hydrogen storage materials operated under near-ambient conditions. In this work, we propose a new strategy of using noble gases for space holding to design porous titanium carbides with abundant open metal sites for hydrogen storage. By using machine learning and graph theory-assisted universal structure searching methods, we obtain 28 porous titanium carbides from three precursors (TiC dimer, C atom, and Kr atom) under 30 GPa of pressure. The stability and hydrogen storage performance of the resulting structures are further assessed and validated through density function theory and grand canonical Monte Carlo simulations with a DFT-fitted force field. Finally, p-TiC2 is identified as a promising quasi-molecular hydrogen storage material with capacity of 4.0 wt % and 106.0 g/L at 230 K and 16 bar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.