Abstract

This paper presents the results of the first pilot project on mechanical biological waste treatment (MBWT) in South Africa. The study has shown that biological waste treatment in windrows using a passive aeration system that utilises thermal convection to drive the aeration process within a windrow of waste is appropriate for South Africa, in relation to low capital costs, low energy inputs, limited plant requirements and potential for labour-intensive operations. The influence of climate, waste composition and operational facilities was evaluated to optimise the treatment technique to local conditions. The maximum temperatures reached during the intensive thermophilic stage were effectively equivalent to the German experience. The lower CO 2 production experienced in the South African trials was attributed to a different waste stream (high presence of plastics) due to the absence of a proper source separated waste collection system. An accurate adjustment of the input material (structural matter in particular) to the specific ambient conditions and irrigation during composting should result in higher organic carbon degradation efficiency in equivalent timeframes. This preliminary experience suggests that the applicability of MBWT in emerging countries, such as South Africa, is directly dependant on the mechanical treatment steps, available operational facilities and nature of the input material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call