Abstract
In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph G and a positive integer k, and the objective is to decide whether G contains a minimal vertex cover of size at least k. Motivated by the kernelization of MMVC with parameter k, our main contribution is to introduce a simple general framework to obtain kernelization lower bounds for a certain type of kernels for optimization problems, which we call lop -kernels. Informally, this type of kernel is required to preserve large optimal solutions in the reduced instance, and captures the vast majority of existing kernels in the literature. As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is essentially optimal, answering a question of Boria et al. Discrete Appl Math 196:62–71, 2015. https://doi.org/10.1016/j.dam.2014.06.001), and that the known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal. We present further applications for Tree Deletion Set and for Maximum Independent Set on \(K_t\)-free graphs. Back to the MMVC problem, given the (plausible) non-existence of subquadratic kernels for MMVC on general graphs, we provide subquadratic kernels on H-free graphs for several graphs H, such as the bull, the paw, or the complete graphs, by making use of the Erdős–Hajnal property. Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a minimum vertex cover of the input graph, even on bipartite graphs, unless \(\mathsf{NP} \subseteq \mathsf{coNP} / \mathsf{poly}\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.