Abstract

Signal processing over graphs has recently attracted significant attentions for dealing with structured data. Normal graphs, however, only model pairwise relationships between nodes and are not effective in representing and capturing some high-order relationships of data samples, which are common in many applications such as Internet of Things (IoT). In this work, we propose a new framework of hypergraph signal processing (HGSP) based on tensor representation to generalize the traditional graph signal processing (GSP) to tackle high-order interactions. We introduce the core concepts of HGSP and define the hypergraph Fourier space. We then study the spectrum properties of hypergraph Fourier transform and explain its connection to mainstream digital signal processing. We derive the novel hypergraph sampling theory and present the fundamentals of hypergraph filter design based on the tensor framework. We present HGSP-based methods for several signal processing and data analysis applications. Our experimental results demonstrate significant performance improvement using our HGSP framework over some traditional signal processing solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.