Abstract

In the literature about model predictive control (MPC), contact forces are planned rather than controlled. In this paper, we propose a novel paradigm to incorporate effort measurements into a predictive controller, hence allowing to control them by direct measurement feedback. We first demonstrate why the classical optimal control formulation, based on position and velocity state feedback, cannot handle direct feedback on force information. Following previous approaches in force control, we then propose to augment the classical formulations with a model of the robot actuation, which naturally allows to generate online trajectories that adapt to sensed position, velocity and torques. We propose a complete implementation of this idea on the upper part of a real humanoid robot, and show through hardware experiments that this new formulation incorporating effort feedback outperforms classical MPC in challenging tasks where physical interaction with the environment is crucial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.