Abstract

A computational strategy that integrates our peptide search algorithm with atomistic molecular dynamics simulation was used to design rational peptide drugs that recognize and bind to the anticodon stem and loop domain (ASL(Lys3)) of human tRNAUUULys3 for the purpose of interrupting HIV replication. The score function of the search algorithm was improved by adding a peptide stability term weighted by an adjustable factor λ to the peptide binding free energy. The five best peptide sequences associated with five different values of λ were determined using the search algorithm and then input in atomistic simulations to examine the stability of the peptides' folded conformations and their ability to bind to ASL(Lys3). Simulation results demonstrated that setting an intermediate value of λ achieves a good balance between optimizing the peptide's binding ability and stabilizing its folded conformation during the sequence evolution process, and hence leads to optimal binding to the target ASL(Lys3). Thus, addition of a peptide stability term significantly improves the success rate for our peptide design search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.