Abstract

Previously, it has to be acknowledged that overexpressed heat shock protein B27 (HSPB27) have been implicated in the etiology of wide range of human cancers. However, the molecular mechanism leading to the disease initiation to progression in liver cancer is still unknown. Present work was undertaken to investigate the differentially expressed HSPB27 in association with those damages that lead to liver cancer development. For the identification of liver cancer biomarker, samples were subjected to comparative proteomic analysis using two-dimensional gel electrophoresis (2-DE) and were further validated by Western blot and immunohistochemical analysis. After validation, in silico studies were applied to demonstrate the significantly induced phosphorylated and S-nitrosylated signals. The later included the interacting partner of HSPB27, i.e., mitogen-activated protein kinase-3 and 5 (MAPK3 and 5), ubiquitin C (UBC), v-akt murine thymoma viral oncogene homolog 1 (AKT1), mitogen-activated protein kinase 14 (MAPK14), and tumor protein p53 (TP53), which bestowed with critical capabilities, namely, apoptosis, cell cycling, stress activation, tumor suppression, cell survival, angiogenesis, proliferation, and stress resistance. Taking together, these results shed new light on the potential biomarker HSPB27 that overexpression of HSPB27 did lead to upregulation of their interacting partner that together demonstrate their possible role as a novel tumor progressive agent for the treatment of metastasis in liver cancer. HSPB27 is a promising diagnostic marker for liver cancer although further large-scale studies are required. Also, molecular profiling may help pave the road to the discovery of new therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call