Abstract

AbstractCrop-livestock integration has demonstrated that cover crops can be terminated using livestock grazing with minimal negative impacts on soil health, however, provides little information on system-level approaches that mutually benefit soil health and both crop and livestock production. Therefore, the objective of this research was to examine the effects of cover crop mixtures on biomass production, quality and the potential for nitrate toxicity on a dryland wheat-cover crop rotation. This research was conducted at the Montana State University-Northern Agricultural Research Center near Havre, MT (48°29′N, −109°48′W) from 2012 to 2019. This experiment was conducted as a randomized-complete-block design, where 29 individual species were utilized in 15 different cover crop mixtures in a wheat-cover crop rotation. Cover crop mixtures were classified into four treatment groups, including (1) cool-season species, (2) warm-season species dominant, (3) cool and warm-season species mixture (mid-season), and (4) a barley (Hordeum vulgare) control. All cover crop mixtures were terminated at anthesis of cool-season cereal species to avoid volunteer cereal grains in the following wheat crop. At the time of cover crop termination, dry matter forage production was estimated and analyzed for crude protein, total digestible nutrients and nitrates as indicators of forage quality. All mixtures containing oats (Avena sativa) had greater (P ⩽ 0.03) biomass production than other mixtures within their respective treatment groups (cool- and mid-season). Forage biomass was influenced by cover crop treatment group, with the barley producing the greatest (P < 0.01) amount of forage biomass when compared to cool-, mid- and warm-season cover crop treatments. Total digestible nutrients were greater (P < 0.01) in the barley control compared to the cool- and mid-season treatment groups. Crude protein was greatest in the warm-season treatment group (P < 0.01) compared to the barley control, cool- and mid-season treatment groups. The barley control produced fewer nitrates (P ⩽ 0.05) than the cool-, mid- and warm-season treatment groups; however, all cover crop mixtures produced nitrates at levels unsafe for livestock consumption at least one year of the study. The relatively high and variable nitrate levels of all cover crop mixtures across years in this study suggest that forage should be tested for nitrates before grazing. In conclusion, our research suggests that in a dryland wheat-cover crop rotation that requires early-July termination, cool-season cover crop mixtures are the most suitable forage source for livestock grazing most years.

Highlights

  • Dryland cereal grain production in the Northern Great Plains typically includes a crop-fallow rotation to allow for soil water recharge and nitrogen mineralization before the following crop year (Lenssen et al, 2007; Gan et al, 2015)

  • Cover crop mixture nested within treatment had an influence (P < 0.01) on biomass production (Table 5), where all mixtures containing oats (Avena sativa) had greater (P ⩽ 0.03) biomass production than the mixtures excluding oats within their respective treatment groups

  • The barley control on average produced a minimum of 949 kg ha−1 more biomass than any other cover crop mixture regardless of treatment group (P < 0.01)

Read more

Summary

Introduction

Dryland cereal grain production in the Northern Great Plains typically includes a crop-fallow rotation to allow for soil water recharge and nitrogen mineralization before the following crop year (Lenssen et al, 2007; Gan et al, 2015). It has been well documented that in semiarid systems, only 25–40% of precipitation is effectively stored in the soil on fallow years, leading to increased concerns related to soil erosion and sustainability (Hatfield et al, 2001). Diversifying cropping systems, such as incorporating a cover crop in a wheat-fallow system, has been shown to reduce erosion, and improve soil organic carbon and nitrogen, which leads to retention of organically bound nutrients and improved soil hydrology (Franzluebbers and Stuedemann, 2008b; Blanco-Canqui et al, 2015).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call