Abstract

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.

Highlights

  • Visual evoked potentials (VEPs) are EEG responses to the visual stimuli

  • We showed that the proposed code was able to evoke distinctive identifiable responses in EEG comparable with the m-sequence code that is currently employed in Code modulated Visual Evoked Potentials (c-VEP) response generation and code modulated based Brain-computer interfaces (BCI)

  • Considering the above reasons for the significant reduction of subjective fatigue by chaotic codes, we suggest their use for designing ergonomic c-VEP based BCI applications

Read more

Summary

Introduction

Visual evoked potentials (VEPs) are EEG responses to the visual stimuli. Brain-computer interfaces (BCI) based on these potentials are becoming popular, for their less training time and high information transfer rate (ITR) [1]. In code modulated BCI systems, the pattern of flashing is determined by using a pseudo-random manner sequence such as an m-sequence [5]. In this modality the work mechanism is based on using the different shifts of modulating codes. These codes have Dirac like auto-correlation function that allows using shifted versions of modulating codes as different targets for evoking different VEPs. A simple and short calibration allows to have a specific EEG response to the msequence, and with that, all the targets that are lagged versions of the same m-sequence can be distinguished [2, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call