Abstract
Typically, the edges of single-walled carbon nanotubes (SWCNTs) are capped with fullerene hemispheres having the same diameter as the nanotubes. In the present numerical study, a bone-shaped (BS) carbon nanotube (CNT) is introduced in order to test its reinforcing capabilities when used as filler within a polymer matrix. The specific complex molecular structure is composed by a SWCNT, the two open edges of which are appropriately closed with larger fullerenes. Specifically, the tubular shape of the proposed nanofiber (NFB) is achieved by the utilization of the zigzag (10,0) SWCNT while the fullerene C500 is appropriately attached at the nanotube open edges for the formation of two spherical heads. The developed BS NFB is used as reinforcement in a polyethylene (PE) matrix at several mass fractions. Corresponding periodic unit cells are developed and simulated via molecular dynamics (MD) to predict the tensile and shear stress-strain response of the investigated nanocomposites. Additionally, appropriate numerical tests are also conducted for computing the NFB/PE interfacial binding energy and, thus, characterizing the interfacial strength of the nanocomposites. For comparison purposes, all numerical tests are repeated by using as reinforcement the conventionally capped (10,0) SWCNT of the same number of atoms instead of the BS one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.