Abstract

The efficiency and accuracy of estimating the Hurst exponent have been two inevitable considerations. Recently, an efficient implementation of the maximum likelihood estimator (MLE) (simply called the fast MLE) for the Hurst exponent was proposed based on a combination of the Levinson algorithm and Cholesky decomposition, and furthermore the fast MLE has also considered all four possible cases, including known mean, unknown mean, known variance, and unknown variance. In this paper, four cases of an approximate MLE (AMLE) were obtained based on two approximations of the logarithmic determinant and the inverse of a covariance matrix. The computational cost of the AMLE is much lower than that of the MLE, but a little higher than that of the fast MLE. To raise the computational efficiency of the proposed AMLE, a required power spectral density (PSD) was indirectly calculated by interpolating two suitable PSDs chosen from a set of established PSDs. Experimental results show that the AMLE through interpolation (simply called the interpolating AMLE) can speed up computation. The computational speed of the interpolating AMLE is on average over 24 times quicker than that of the fast MLE while remaining the accuracy very close to that of the MLE or the fast MLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call