Abstract

The resolvent method, proposed by Sadovnichiy and Dubrovsky in the 1990s, is successfully applied in the direct spectral problem to calculate the asymptotics of eigenvalues of the perturbed operator, find formulas for the regularized trace, and recover perturbation. But the application of this method faces difficulties when the resolvent of the unperturbed operator is non-nuclear. Therefore, a number of physical problems could only be considered on the interval. This article describes a justification of the transition to the power of an operator in order to expand the area of possible applications of the resolvent method. Considering the problem of calculating the regularized trace of the Laplace operator on a parallelepiped of arbitrary dimension, we show that for every fixed dimension it is possible to choose the required power of the operator and to calculate the regularized traces. These studies are relevant due to the need to study important applied problems, particularly in hydrodynamics, electronics, elasticity theory, quantum mechanics, and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.