Abstract

This paper illustrates the application of an antibody, anti-parathyroid hormone (anti-PTH), as a bioreceptor in a biosensor system for the first time, and demonstrates how this biosensor can be used in parathyroid hormone (PTH) determination. The interaction between the biosensor and parathyroid hormone was firstly investigated by a novel electrochemical method, single frequency impedance analysis. The biosensor was based on the gold electrode modified by cysteine self-assembled monolayers. Anti-PTH was covalently immobilized onto cysteine layer by using an EDC/NHS couple. The immobilization of anti-PTH was monitored by cyclic voltammetry and electrochemical impedance spectroscopy techniques. The performance of the biosensor was evaluated in terms of linearity, sensitivity, repeatability and reproducibility, after a few important optimization studies were carried out. In particular, parathyroid hormone was detected within a linear range of 10–60fg/mL. Kramers–Kronig transform was also performed on the impedance data. The specificity of the biosensor was also evaluated. The biosensor was validated by using a complementary reference technique. Lastly the developed biosensor was used to monitor PTH levels in artificial serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.