Abstract

The correlation functional holds significance in density functional theory as it addresses electron–electron interactions beyond the mean-field approximation, enhancing the accuracy of total energy calculations, electronic excitations, and the prediction of materials properties. There are several expressions to describe this energy, and each of them has a unique set of errors in calculating particular properties of materials. This work offers a new correlation functional by employing the density's dependence on ionization energy. We theoretically derived this functional and combined it with the previously reported ionization energy dependent exchange functional to investigate its effect on the total energy, bond energy, dipole moment, and zero-point energy of 62 molecules. The comparison of this new functional in respect to existing widely used correlation models including QMC, PBE, B3LYP and Chachiyo models shows how well it works in producing accurate results with minimal mean absolute error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.