Abstract

De-radioactivity is characteristically opposed to the concept of radioactivity. The possible mechanism behind the concept of de-radioactivity involves the intra-trapping, intra-embedding and intra-fixing of the metallic radioisotope or stable isotope within the framework of the novel molecules loaded with the potential transfer of excess electrons to the metal nucleus to suppress the decay of the instable neutron to the proton and electron with the release of energy, stabilising the stable isotopes or metal radioisotopes so strongly as to result in zero dissociation of metal (stable isotope or metal radioisotope) and thus depriving metal radioisotope of its free status - an essential condition of metal radioisotope to decay. The whole study has been based on metal stable isotopes extendable to metal radioisotopes. The novel molecules (SSS-101, SSS-102, SSS-103 and SSS-104) which bring about intra-trapping and intra-fixing of the metal radioisotopes are called Radiostabilisers. Humanity may find a silver lining in this new concept for future safety with its possible wide spectrum practical applications. Radiostabilisers may help in the purification and reclaiming of metal radioisotope(s) contaminated sea-water or water, atmospherics and the nuclear liquid waste materials. The radiostabilisers fail to intra-trap the stable or radioisotopes of hydrogen, helium, carbon, boron, phosphorus, iodine, neon, argon, krypton, xenon, oxygen, fluorine, sulphur and chlorine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.