Abstract
Roete, AJ, Stoter, IK, Lamberts, RP, Elferink-Gemser, MT, and Otter, RTA. Introducing a method to quantify the specificity of training for races in speed skating. J Strength Cond Res 36(7): 1998-2004, 2022-The specificity of training for races is believed to be important for performance development. However, measuring specificity is challenging. This study aimed to develop a method to quantify the specificity of speed skating training for sprint races (i.e., 500 and 1,000 m), and explore the amount of training specificity with a pilot study. On-ice training and races of 10 subelite-to-elite speed skaters were analyzed during 1 season (i.e., 26 weeks). Intensity was mapped using 5 equal zones, between 4 m·s-1 to peak velocity and 50% to peak heart rate. Training specificity was defined as skating in the intensity zone most representative for the race for a similar period as during the race. During the season, eight 500 m races, seven 1,000 m races, and 509 training sessions were analyzed, of which 414 contained heart rate and 375 sessions contained velocity measures. Within-subject analyses were performed. During races, most time was spent in the highest intensity zone (Vz5 and HRz5). In training, the highest velocity zone Vz5 was reached 107 ± 28 times, with 9 ± 3 efforts (0.3 ± 0.1% training) long enough to be considered 500 m specific, 6 ± 5 efforts (0.3 ± 0.3% training) were considered 1,000 m specific. For heart rate, HRz5 was reached 151 ± 89 times in training, 43 ± 33 efforts (1.3 ± 0.9% training) were considered 500 m specific, and 36 ± 23 efforts (3.2 ± 1.7% training) were considered 1,000 m specific. This newly developed method enables the examination of training specificity so that coaches can control whether their intended specificity was reached. It also opens doors to further explore the impact of training specificity on performance development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.