Abstract
Data-driven models in a combination of optimization algorithms could be beneficial methods for predicting and optimizing in vitro culture processes. This study was aimed at modeling and optimizing a new embryogenesis medium for chrysanthemum. Three individual data-driven models, including multi-layer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), and support vector regression (SVR), were developed for callogenesis rate (CR), embryogenesis rate (ER), and somatic embryo number (SEN). Consequently, the best obtained results were used in the fusion process by a bagging method. For medium reformulation, effects of eight ionic macronutrients on CR, ER, and SEN and effects of four vitamins on SEN were evaluated using data fusion (DF)-non-dominated sorting genetic algorithm-II (NSGA-II) and DF-genetic algorithm (GA), respectively. Results showed that DF models with the highest R2 had superb performance in comparison with all other individual models. According to DF-NSGAII, the highest ER and SEN can be obtained from the medium containing 14.27mM NH4+, 38.92mM NO3-, 22.79mMK+, 5.08mM Cl-, 3.34mM Ca2+, 1.67mMMg2+, 2.17mM SO42-, and 1.44mM H2PO4-. Based on the DF-GA model, the maximum SEN can be obtained from a medium containing 0.61μM thiamine, 5.93μM nicotinic acid, 0.25μM biotin, and 0.26μM riboflavin. The efficiency of the established-optimized medium was experimentally compared to Murashige and Skoog medium (MS) for embryogenesis of five chrysanthemum cultivars, and results indicated the efficiency of optimized medium over MS medium.Key points• MLP, SVR, and ANFIS were fused by a bagging method to develop a data fusion model.• NSGA-II and GA were linked to the data fusion model for establishing and optimizing a new embryogenesis medium.• The new culture medium (HNT) had better efficiency than MS medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.