Abstract

This paper introduces a formalism which extends that of “Green's function” and that of “the Volterra series”. These formalisms are typically used to solve, respectively, linear inhomogeneous space–time differential equations in physics and weakly nonlinear time-differential input-to-output systems in automatic control. While Green's function is a space–time integral kernel which fully characterizes a linear problem, the Volterra series expansions involve a sequence of multi-variate time integral kernels (of convolution type for time-invariant systems). The extension proposed here consists in combining the two approaches, by introducing a series expansion based on multi-variate space–time integral kernels. This series allows the representation of the space–time solution of weakly nonlinear boundary problems excited by an “input” which depends on space and time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call