Abstract

Partial information decomposition of the multivariate mutual information describes the distinct ways in which a set of source variables contains information about a target variable. The groundbreaking work of Williams and Beer has shown that this decomposition cannot be determined from classic information theory without making additional assumptions, and several candidate measures have been proposed, often drawing on principles from related fields such as decision theory. None of these measures is differentiable with respect to the underlying probability mass function. We here present a measure that satisfies this property, emerges solely from information-theoretic principles, and has the form of a local mutual information. We show how the measure can be understood from the perspective of exclusions of probability mass, a principle that is foundational to the original definition of mutual information by Fano. Since our measure is well defined for individual realizations of random variables it lends itself, for example, to local learning in artificial neural networks. We also show that it has a meaningful Möbius inversion on a redundancy lattice and obeys a target chain rule. We give an operational interpretation of the measure based on the decisions that an agent should take if given only the shared information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.