Abstract

We present a comparative study of oxygen vacancies in In2O3, SnO2, and ZnO based on the hybrid-functional method within the density-functional theory (DFT). For In2O3 and SnO2, our results provide strong evidence of shallow donor states at oxygen vacancies. In comparison with the (semi)local exchange-correlation approximations in DFT, the hybrid-functional method strongly lowers the formation energy of the positive charge state and keeps that of the neutral state nearly intact. The trend is analyzed in terms of changes in lattice relaxation energies and in electron energy levels near the band gap. The existence of shallow donor states at oxygen vacancies and the consequent n-type conductivity are in line with experimental findings. The results invalidate some former theoretical interpretations based on standard DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.