Abstract

Here, we describe the design features that lead to intrinsically thermally conductive polymers. Though polymers are conventionally assumed to be thermal insulators (<0.3 W m-1 K-1), significant efforts by the thermal transport community have shown that polymers can be intrinsically thermally conductive (>1.0 W m-1 K-1). However, these findings have not yet driven comprehensive synthetic efforts to expose how different macromolecular features impact thermal conductivity. Preliminary theoretical and experimental investigations have revealed that high k polymers can be realized by enhancing the alignment, crystallinity, and intermolecular interactions. While a holistic mechanistic framework does not yet exist for thermal transport in polymeric materials, contemporary literature suggests that phonon-like heat carriers may be operative in macromolecules that meet the abovementioned criteria. In this review, we offer a perspective on how high thermal conductivity polymers can be systematically engineered from this understanding. Reports for several classes of macromolecules, including linear polymers, network polymers, liquid-crystalline polymers, and two-dimensional polymers substantiate the design principles we propose. Throughout this work, we offer opportunities for continued fundamental and technological development of polymers with high thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call