Abstract

The prosperous development of stretchable electronics poses a great demand on stretchable conductive materials that could maintain their electrical conductivity under tensile strain. Previously reported strategies to obtain stretchable conductors usually involve complex structure-fabricating processes or utilization of high-cost nanomaterials. It remains a great challenge to produce stretchable and conductive materials via a scalable and cost-effective process. Herein, a large-scalable pyrolysis strategy is developed for the fabrication of intrinsically stretchable and conductive textile in utilizing low-cost and mass-produced weft-knitted textiles as raw materials. Due to the intrinsic stretchability of the weft-knitted structure and the excellent mechanical and electrical properties of the as-obtained carbonized fibers, the obtained flexible and durable textile could sustain tensile strains up to 125% while keeping a stable electrical conductivity (as shown by a Modal-based textile), thus ensuring its applications in elastic electronics. For demonstration purposes, stretchable supercapacitors and wearable thermal-therapy devices that showed stable performance with the loading of tensile strains have been fabricated. Considering the simplicity and large scalability of the process, the low-cost and mass production of the raw materials, and the superior performances of the as-obtained elastic and conductive textile, this strategy would contribute to the development and industrial production of wearable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call