Abstract
In many applications, one needs to combine materials with varying properties to achieve certain functionalities. For example, the inner layer of a helmet should be soft for cushioning while the outer shell should be rigid to provide protection. Over time, these combined materials either separate or wear and tear, risking the exposure of an undesired material property. This work presents a design principle for a material that gains unique properties from its 3D microstructure, consisting of repeating basic building blocks, rather than its material composition. The 3D printed specimens show, at two of its opposing faces along the same axis, different stiffness (i.e., soft on one face and hard on the other). The realized material is protected by design (i.e., topology) against cuts and tears: No matter how material is removed, either layer by layer, or in arbitrary cuts through the repeating building blocks, two opposing faces remain largely different in their mechanical response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.