Abstract
AbstractLayer‐structured GeSb2Te4 is a promising thermoelectric candidate, while its anisotropy of thermal and electrical transport properties is still not clear. In this study, Ge1–xInxSb2Te4 single crystals are grown by Bridgman method, and their anisotropic thermoelectric properties are systematically investigated. Lower electrical conductivity and higher Seebeck coefficient are observed in the c‐axis due to the higher effective mass in this direction. Intrinsically low lattice thermal conductivity is also observed in the c‐axis due to the weak chemical bonding and the strong lattice anharmonicity proved by density functional theory calculation. Indium doping introduces an impurity band in the bandgap of GeSb2Te4 and leads to the locally distorted density of states near the Fermi level, which contributes to enhanced Seebeck coefficient and improved power factor. Ultimately, a peak zT value of 1 at 673 K and an average zT value of 0.68 within 323–773 K are obtained in Ge0.93In0.07Sb2Te4 along the c‐axis direction, which are 54% and 79% higher than that of the pristine GeSb2Te4 single crystal, respectively. This study clarified the origin of intrinsic low lattice thermal conductivity and anisotropy transport properties in GeSb2Te4, and shed light on the performance optimization of other layered thermoelectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.