Abstract

UreG is an essential protein for the in vivo activation of urease. In a previous study, UreG from Bacillus pasteurii was shown to behave as an intrinsically unstructured dimeric protein. Here, intrinsic and extrinsic fluorescence experiments were performed, in the absence and presence of denaturant, to provide information about the form (fully folded, molten globule, premolten globule, or random coil) that the native state of BpUreG assumes in solution. The features of the emission band of the unique tryptophan residue (W192) located on the C-terminal helix, as well as the rate of bimolecular quenching by potassium iodide, indicated that, in the native state, W192 is protected from the aqueous polar solvent, while upon addition of denaturant, a conformational change occurs that causes solvent exposure of the indole side chain. This structural change, mainly affecting the C-terminal helix, is associated with the release of static quenching, as shown by resolution of the decay-associated spectra. The exposure of protein hydrophobic sites, monitored using the fluorescent probe bis-ANS, indicated that the native dimeric state of BpUreG is disordered even though it maintains a significant amount of tertiary structure. ANS fluorescence also indicated that, upon addition of a small amount of GuHCl, a transition to a molten globule state occurs, followed by formation of a pre-molten globule state at a higher denaturant concentration. The latter form is resistant to full unfolding, as also revealed by far-UV circular dichroism spectroscopy. The hydrodynamic parameters obtained by time-resolved fluorescence anisotropy at maximal denaturant concentrations (3 M GuHCl) confirmed the existence of a disordered but stable dimeric protein core. The nature of the forces holding together the two monomers of BpUreG was investigated. Determination of free thiols in native or denaturant conditions, as well as light scattering experiments in the absence and presence of dithiothreitol as a reducing agent, under native or denaturing conditions, indicates that a disulfide bond, involving the unique conserved cysteine C68, is present under native conditions and maintained upon addition of denaturant. This covalent bond is therefore important for the stabilization of the dimer under native conditions. The intrinsically disordered structure of UreG is discussed with respect to the role of this protein as a chaperone in the urease assembly system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.