Abstract

Hydrogel-based flexible sensors are of promising applications in various fields, but fabrication of such sensors with integrated high performances remains a challenge. In this work, flexible sensors (both strain sensors and pressure sensors) with integrated high performances are fabricated utilizing double network (DN) organohydrogels. Because of the unique structure of DN organohydrogels, the flexible sensors exhibit intrinsic adhesion without introducing components that are often used to obtain adhesive hydrogels, such as polydopamine, nucleobases or proteins. In addition, outstanding temperature tolerance (−18 to 80 °C), high stretchability (>2000%), tensile strength (>300 kPa), self-healing ability (96.5%) and transparency (90%) are also achieved. Resistive-type strain sensors of DN organohydrogels achieve high gauge factor (GF = 2.58), low response time (0.18 s), large sensing range (0–1000%) and reversible sensing ability (>1000 cycles). Sandwich-shaped capacitive-type pressure sensors comprising DN organohydrogel electrodes with reliefs exhibit a high sensitivity of 2.14 kPa−1. Such flexible sensors can be applied in monitoring various human motions and subtle physiological activities and further promoted as wireless sensors on the basis of a Bluetooth protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.