Abstract

The calcium squarate with a rigid framework is found to exhibit volumetric negative thermal expansion (NTE) with the coefficient -9.51(5) × 10-6 K-1 and uniaxial zero thermal expansion (ZTE, -0.14(4) × 10-6 K-1) over a wide temperature. Detailed comparison of the long-range and local structure sheds light on the fact that the anomalous thermal expansion originates from the transverse vibration of the bridging squarate ligand, although it has been tightly bonded by five calcium ions. We believe that this study can provide a deep insight into the origin of NTE and the structural flexibility of metal organic frameworks (MOFs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.