Abstract

LetKbe ad-dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote byKnthe convex hull ofnpoints chosen randomly and independently fromKaccording to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of thesth intrinsic volumesVs(Kn) ofKnfors∈ {1,…,d}. Furthermore, strong laws of large numbers are proved for the intrinsic volumes ofKn. The essential tools are the economic cap covering theorem of Bárány and Larman, and the Efron-Stein jackknife inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.