Abstract

Valley, as a new degree of freedom for electrons, has drawn considerable attention due to its significant potential for encoding and storing information. Lifting the energy degeneracy to achieve valley polarization is necessary for realizing valleytronic devices. Here, on the basis of first-principles calculations, we show that single-layer FeCl 2 exhibits a large spontaneous valley polarization (∼101 meV) arising from the broken time-reversal symmetry and spin-orbital coupling, which can be continuously tuned by varying the direction of magnetic crystalline. By employing the perturbation theory, the underlying physical mechanism is unveiled. Moreover, the coupling between valley degree of freedom and ferromagnetic order could generate a spin- and valley-polarized anomalous Hall current in the presence of the in-plane electric field, facilitating its experimental exploration and practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.