Abstract

An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0 % was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method. This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix, as revealed by transmission electron microscopy observations and high-energy X-ray diffraction experiments. After superelastic training for 30 loading/unloading cycles at room temperature, the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2 %. Furthermore, a giant recoverable strain of 11.2 % was attained under a bias stress of 300 MPa in the trained microwire. These properties confer this microwire great potential for micro-actuation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.