Abstract

The Orange Carotenoid Protein (OCP) regulates cyanobacterial photosynthetic activity through photoactivation in intense light. A hydrogen bonding network involving the keto-carotenoid oxygen and Y201 and W288 residues prevents the spontaneous activation of dark-adapted OCP. To investigate the role of the hydrogen bonds in OCP photocycling, we introduced non-canonical amino acids near the keto-carotenoid, particularly iodine at the meta-position of Y201. This modification significantly increased the yield of red OCP photoproducts, albeit with a shorter lifetime. Changes in tryptophan fluorescence during photocycling influenced by the presence of iodine near W288 revealed interactions between Y201 and W288 in the absence of the carotenoid in the C-domain. We propose that upon the relaxation of red states, a ternary complex with the carotenoid is formed. Analysis of spectral signatures and interaction energies indicates that the specific iodo-tyrosine configuration enhances interactions between the carotenoid and W288.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call