Abstract
As one-dimension line defects, grain boundaries (GBs) can affect many intrinsic properties of graphene. In this paper, the mechanical properties of 20 representative graphene grain boundaries were studied using density functional theory and molecular dynamics. With different arrangements of the pentagonal and heptagonal rings, the grain boundary may remain flat or become inflected up to 72°. For the flat GBs, the intrinsic tensile strength decreases linearly with the formation energy with a maximum value of 93 GPa, close to that of a perfect graphene. The intrinsic tensile strength of the inflected GBs is found to generally decrease with increasing inflection angle. Stone-Wales transformation is identified as the major failure mechanism of graphene GBs at high temperatures, whereas the initial fracture site can be either on the boundary line or inside the domain. These theoretical results constitute a useful picture of the grain boundary effect on the mechanical properties of polycrystalline graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.