Abstract

X-ray diffraction pattern from cotton fiber (dch32) grown in the Karnataka state of India has been recorded. Fiber was found to contain 17 Bragg reflections, of which 11 are broadened because of crystal size and intrinsic strain influences. Contributions to integrated intensities from intrinsic strain in the fiber have been estimated using line profile analysis. A molecular model was first constructed with standard bond lengths and angles using helical symmetry and layer-line spacings observed in the X-ray pattern. The model was then refined against observed X-ray data using the linked atom least squares (LALS) method. The refinement has been done with and without the intrinsic strain correction to find the extent of structural changes. These changes have been quantified in terms of bond angles, bond lengths, and torsion angles. Young’s modulus has been estimated for these fibers using the results of line profile analysis, and a broad agreement with the reported physical measurements has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.