Abstract

This study examines an intrinsic penalized smoothing method on the 2-sphere. We propose a method based on the spherical Bézier curves obtained using a generalized de Casteljau algorithm to provide a degree-based regularity constraint to the spherical smoothing problem. A smooth Bézier curve is found by minimizing the least squares criterion under the regularization constraint. The de Casteljau algorithm constructs higher-order Bézier curves in a recursive manner using linear Bézier curves. We introduce a local penalization scheme based on a penalty function that regularizes the velocity differences in consecutive linear Bézier curves. The imposed penalty induces sparsity on the control points so that the proposed method determines the number of control points, or equivalently the order of the Bézier curve, in a data-adaptive way. An efficient Riemannian block coordinate descent algorithm is devised to implement the proposed method. Numerical studies based on real and simulated data are provided to illustrate the performance and properties of the proposed method. The results show that the penalized Bézier curve adapts well to local data trends without compromising overall smoothness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.