Abstract

It has long been posited that the space of speech sounds is inherently low dimensional, the result of a relatively small number of degrees of freedom involved in the human vocal apparatus. We attempt to formalize this notion by analyzing a simple physical model of the vocal tract and demonstrating that it produces transfer functions whose spectra are restricted to low dimensional manifolds embedded in an infinite dimensional space of square integrable functions. While source convolution and channel distortion precludes analytic recovery of the articulatory configuration from the observed signal, we present a data-driven unsupervised learning algorithm called Intrinsic Spectral Analysis designed to recover from a stream of unannotated and unsegmented audio a set of nonlinear basis functions for the speech manifold. Projecting a traditional spectrogram onto this nonlinear basis defines a novel acoustic representation that is demonstrated to have phonological significance, improved phonetic separability, inherent speaker independence, and complementarity with standard acoustic front-ends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.