Abstract

The intrinsic self-healing ability of polyketone (PK) chemically modified into furan and/or OH groups containing derivatives is presented. Polymers bearing different ratios of both functional groups were cross-linked via furan/bis-maleimide (Diels-Alder adducts) and hydrogen bonding interactions (aliphatic and aromatic OH groups). The resulting thermosets display tuneable softening points (peak of tan (δ)) from 90 to 137°C as established by DMTA. It is found that the cross-linked system containing only furan groups shows the highest softening temperature. On the other hand, systems displaying the combination of Diels-Alder adducts and hydrogen bonding (up to 60mol % of OH groups) do not show any change in modulus between heating cycles (i.e. factually a quantitative recovery of the mechanical behaviour). It is believed that the novelty of these tuneable thermosets can offer significant advantages over conventional reversible covalent systems. The synergistic reinforcement of both interactions resists multiple heating/healing cycles without any loss of mechanical properties even for thermally healed broken samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.